Course Outline

Title: PROGRAMMING 1

Code: ITECH1000

Formerly: CP514

Faculty / Portfolio: Faculty of Science

Program Level:

	AQF Level of Program						
	5	6	7	8	9	10	
Level							
Introductory			~				
Intermediate							
Advanced							

Pre-requisites: Nil

Co-requisites: Nil

Exclusions: (CP514 and CP520 and CP809 and ITECH5000)

Progress Units: 15

ASCED Code: 020103

Learning Outcomes:

Knowledge:

- **K1.** identify and use the correct syntax of a common programming language;
- **K2.** recall and use typical programming constructs to design and implement simple software solutions;
- **K3.** reproduce and adapt commonly used basic algorithms;
- **K4.** explain the importance of programming style concepts (documentation, mnemonic names, indentation);

Skills:

- **S1.** utilise pseudocode and/or algorithms as a major program design technique;
- **S2.** write and implement a solution algorithm using basic programming constructs;
- **S3.** demonstrate debugging and testing skills whilst writing code;
- **S4.** describe program functionality based on analysis of given program code

Application of knowledge and skills:

- A1. develop self-reliance and judgement in adapting algorithms to diverse contexts;
- **A2.** design and write program solutions to identified problems using accepted design constructs

Values and Graduate Attributes:

Course Outline

ITECH1000 PROGRAMMING 1

Values:

- V1. Develop a professional attitude to the design and implementation of software solutions
- **V2.** Develop problem-solving skills and self-reliance in a program development context

Graduate Attributes:

Attribute	Brief Description	Focus
Continuous Learning	In a blended learning approach facilitated by the use of a	Medium
	contemporary industry based programming language and	
	development environment requiring planning, development and	
	implementation of software solutions, students will continue to develop	
	their knowledge and skills.	
Self Reliance	Students will participate in a self-directed and collaborative learning	Medium
	environment to develop their theoretical and technical expertise in the	
	field of software development.	
Engaged Citizenship	Students will produce programming solutions which meet industry	Medium
	standards.	
Social Responsibility	Students will use industry standard development environments,	Low
	programming languages and development techniques to deploy	
	software solutions.	

Content:

Topics may include:

- Overview of software development and where programming fits in.
- Problem-solving techniques, program types and programming languages.
- The use of variables, operators and programming syntax.
- Program logic including the use of branching, loops and identifying logic errors.
- Procedures and functions.
- Introduction to the use of data, data persistence and file input/output.
- Main features of procedural programming.
- Introduction to common software development methodologies.
- Searching and sorting techniques

Assessment:

Participation in lectures, tutorials and computer laboratory classes. Completion of all tutorial and laboratory worksheets for the semester.

Students are expected to spend time regularly out of scheduled classes by reading reference material as required.

reviewing topics already covered in lectures and preparing for forthcoming topics and laboratory classes, and completing assessment tasks.

Assessment for this course will be based on a number of tasks. These may include written assignments, programming tasks and laboratory exercises covering the systems development and programming design. An end of semester examination is based on all aspects of the course.

Course Outline

ITECH1000 PROGRAMMING 1

Learning Outcomes Assessed	Assessment Task	Assessment Type	Weighting
K1, K2, K3, K4, S1, S2, S3,	Development of skills and deepening of	Assignments and exercises	40 - 50 %
S4, A1, A2	understanding		
K1, K2, K3, K4, S2, S3, S4	Participation in class activities,	Examination(s)	50 - 60%
	supplementary reading and other		
	activities as suggested in lectures		

Adopted Reference Style:

APA

Presentation of Academic Work:

https://federation.edu.au/students/assistance-support-and-services/academic-support/general-guide-for-the-presentation-of-academic-work